Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of pressure on the optical properties of InxGa1-xN epilayers and quantum structures

Identifieur interne : 001078 ( France/Analysis ); précédent : 001077; suivant : 001079

Influence of pressure on the optical properties of InxGa1-xN epilayers and quantum structures

Auteurs : RBID : Pascal:01-0356834

Descripteurs français

English descriptors

Abstract

The influence of hydrostatic pressure on the emission and absorption spectra measured for various types of InGaN structures (epilayers, quantum wells, and quantum dots) is studied. While the known pressure coefficients of the GaN and InN band gaps are about 40 and 25 meV/GPa, respectively, the observed pressure-induced shifts in light emission energy in the InGaN alloys differ significantly from concentration-interpolated values. With increasing In concentration, and thus decreasing emission energy, the observed pressure coefficients become very small, reaching zero for emission energies ∼2 eV (roughly the value of the InN band gap). On the other hand, the pressure coefficient derived from absorption experiments exhibit a much smaller decrease with decreasing energy when referred to the same scale as the emission data. First-principles calculations of InGaN band structures and their modification with pressure are performed. The results are not able to explain the huge effect observed in the emission experiments, but they are in good agreement with the optical absorption data. Significant bowings of the band gap and its pressure coefficients are found, and they are especially large for small In concentrations. This behavior is related to the changes in the upper valence band states due to In alloying. Some possible mechanisms are discussed which might be expected to account for the low pressure coefficients of the light emission energy and the difference between the sensitivity of the emission and absorption to pressure.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:01-0356834

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Influence of pressure on the optical properties of In
<sub>x</sub>
Ga
<sub>1-x</sub>
N epilayers and quantum structures</title>
<author>
<name sortKey="Perlin, P" uniqKey="Perlin P">P. Perlin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>UNIPRESS, High Pressure Research Center, Polish Academy of Sciences Sokolowska 29, 01-142 Warsaw, Poland</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>UNIPRESS, High Pressure Research Center, Polish Academy of Sciences Sokolowska 29, 01-142 Warsaw</wicri:regionArea>
<wicri:noRegion>01-142 Warsaw</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gorczyca, I" uniqKey="Gorczyca I">I. Gorczyca</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>UNIPRESS, High Pressure Research Center, Polish Academy of Sciences Sokolowska 29, 01-142 Warsaw, Poland</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>UNIPRESS, High Pressure Research Center, Polish Academy of Sciences Sokolowska 29, 01-142 Warsaw</wicri:regionArea>
<wicri:noRegion>01-142 Warsaw</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Suski, T" uniqKey="Suski T">T. Suski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>UNIPRESS, High Pressure Research Center, Polish Academy of Sciences Sokolowska 29, 01-142 Warsaw, Poland</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>UNIPRESS, High Pressure Research Center, Polish Academy of Sciences Sokolowska 29, 01-142 Warsaw</wicri:regionArea>
<wicri:noRegion>01-142 Warsaw</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wisniewski, P" uniqKey="Wisniewski P">P. Wisniewski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>UNIPRESS, High Pressure Research Center, Polish Academy of Sciences Sokolowska 29, 01-142 Warsaw, Poland</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>UNIPRESS, High Pressure Research Center, Polish Academy of Sciences Sokolowska 29, 01-142 Warsaw</wicri:regionArea>
<wicri:noRegion>01-142 Warsaw</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lepkowski, S" uniqKey="Lepkowski S">S. Lepkowski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>UNIPRESS, High Pressure Research Center, Polish Academy of Sciences Sokolowska 29, 01-142 Warsaw, Poland</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>UNIPRESS, High Pressure Research Center, Polish Academy of Sciences Sokolowska 29, 01-142 Warsaw</wicri:regionArea>
<wicri:noRegion>01-142 Warsaw</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Christensen, N E" uniqKey="Christensen N">N. E. Christensen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C</wicri:regionArea>
<wicri:noRegion>DK-8000 Aarhus C</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Svane, A" uniqKey="Svane A">A. Svane</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C</wicri:regionArea>
<wicri:noRegion>DK-8000 Aarhus C</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hansen, M" uniqKey="Hansen M">M. Hansen</name>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>Materials and Electrical Engineering Department, University of California, Santa Barbara, California 93106</s1>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Materials and Electrical Engineering Department, University of California, Santa Barbara</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Denbaars, S P" uniqKey="Denbaars S">S. P. Denbaars</name>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>Materials and Electrical Engineering Department, University of California, Santa Barbara, California 93106</s1>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Materials and Electrical Engineering Department, University of California, Santa Barbara</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Damilano, B" uniqKey="Damilano B">B. Damilano</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Centre de Recherche sur lHetero-Epitaxie et ses Applications, CNRS, 06560 Valbonne, France</s1>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">France</country>
<wicri:regionArea>Centre de Recherche sur lHetero-Epitaxie et ses Applications, CNRS, 06560 Valbonne</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Valbonne</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Grandjean, N" uniqKey="Grandjean N">N. Grandjean</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Centre de Recherche sur lHetero-Epitaxie et ses Applications, CNRS, 06560 Valbonne, France</s1>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">France</country>
<wicri:regionArea>Centre de Recherche sur lHetero-Epitaxie et ses Applications, CNRS, 06560 Valbonne</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Valbonne</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Massies, J" uniqKey="Massies J">J. Massies</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Centre de Recherche sur lHetero-Epitaxie et ses Applications, CNRS, 06560 Valbonne, France</s1>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">France</country>
<wicri:regionArea>Centre de Recherche sur lHetero-Epitaxie et ses Applications, CNRS, 06560 Valbonne</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Valbonne</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">01-0356834</idno>
<date when="2001-09-15">2001-09-15</date>
<idno type="stanalyst">PASCAL 01-0356834 AIP</idno>
<idno type="RBID">Pascal:01-0356834</idno>
<idno type="wicri:Area/Main/Corpus">010A83</idno>
<idno type="wicri:Area/Main/Repository">00FE00</idno>
<idno type="wicri:Area/France/Extraction">001078</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1098-0121</idno>
<title level="j" type="abbreviated">Phys. rev., B, Condens. matter mater. phys.</title>
<title level="j" type="main">Physical review. B, Condensed matter and materials physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Energy gap</term>
<term>Experimental study</term>
<term>Gallium compounds</term>
<term>High-pressure effects</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Optical constants</term>
<term>Semiconductor epitaxial layers</term>
<term>Semiconductor quantum dots</term>
<term>Semiconductor quantum wells</term>
<term>Valence bands</term>
<term>Visible spectra</term>
<term>Wide band gap semiconductors</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7120N</term>
<term>7820H</term>
<term>7855C</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Gallium composé</term>
<term>Semiconducteur III-V</term>
<term>Semiconducteur bande interdite large</term>
<term>Couche épitaxique semiconductrice</term>
<term>Puits quantique semiconducteur</term>
<term>Point quantique semiconducteur</term>
<term>Effet haute pression</term>
<term>Spectre visible</term>
<term>Bande interdite</term>
<term>Constante optique</term>
<term>Bande valence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The influence of hydrostatic pressure on the emission and absorption spectra measured for various types of InGaN structures (epilayers, quantum wells, and quantum dots) is studied. While the known pressure coefficients of the GaN and InN band gaps are about 40 and 25 meV/GPa, respectively, the observed pressure-induced shifts in light emission energy in the InGaN alloys differ significantly from concentration-interpolated values. With increasing In concentration, and thus decreasing emission energy, the observed pressure coefficients become very small, reaching zero for emission energies ∼2 eV (roughly the value of the InN band gap). On the other hand, the pressure coefficient derived from absorption experiments exhibit a much smaller decrease with decreasing energy when referred to the same scale as the emission data. First-principles calculations of InGaN band structures and their modification with pressure are performed. The results are not able to explain the huge effect observed in the emission experiments, but they are in good agreement with the optical absorption data. Significant bowings of the band gap and its pressure coefficients are found, and they are especially large for small In concentrations. This behavior is related to the changes in the upper valence band states due to In alloying. Some possible mechanisms are discussed which might be expected to account for the low pressure coefficients of the light emission energy and the difference between the sensitivity of the emission and absorption to pressure.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1098-0121</s0>
</fA01>
<fA02 i1="01">
<s0>PRBMDO</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. rev., B, Condens. matter mater. phys.</s0>
</fA03>
<fA05>
<s2>64</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Influence of pressure on the optical properties of In
<sub>x</sub>
Ga
<sub>1-x</sub>
N epilayers and quantum structures</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PERLIN (P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GORCZYCA (I.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SUSKI (T.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WISNIEWSKI (P.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LEPKOWSKI (S.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>CHRISTENSEN (N. E.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>SVANE (A.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>HANSEN (M.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>DENBAARS (S. P.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>DAMILANO (B.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>GRANDJEAN (N.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>MASSIES (J.)</s1>
</fA11>
<fA14 i1="01">
<s1>UNIPRESS, High Pressure Research Center, Polish Academy of Sciences Sokolowska 29, 01-142 Warsaw, Poland</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Materials and Electrical Engineering Department, University of California, Santa Barbara, California 93106</s1>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Centre de Recherche sur lHetero-Epitaxie et ses Applications, CNRS, 06560 Valbonne, France</s1>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</fA14>
<fA20>
<s2>115319-115319-9</s2>
</fA20>
<fA21>
<s1>2001-09-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>144 B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2001 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>01-0356834</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physical review. B, Condensed matter and materials physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The influence of hydrostatic pressure on the emission and absorption spectra measured for various types of InGaN structures (epilayers, quantum wells, and quantum dots) is studied. While the known pressure coefficients of the GaN and InN band gaps are about 40 and 25 meV/GPa, respectively, the observed pressure-induced shifts in light emission energy in the InGaN alloys differ significantly from concentration-interpolated values. With increasing In concentration, and thus decreasing emission energy, the observed pressure coefficients become very small, reaching zero for emission energies ∼2 eV (roughly the value of the InN band gap). On the other hand, the pressure coefficient derived from absorption experiments exhibit a much smaller decrease with decreasing energy when referred to the same scale as the emission data. First-principles calculations of InGaN band structures and their modification with pressure are performed. The results are not able to explain the huge effect observed in the emission experiments, but they are in good agreement with the optical absorption data. Significant bowings of the band gap and its pressure coefficients are found, and they are especially large for small In concentrations. This behavior is related to the changes in the upper valence band states due to In alloying. Some possible mechanisms are discussed which might be expected to account for the low pressure coefficients of the light emission energy and the difference between the sensitivity of the emission and absorption to pressure.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70A20N</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H20H</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H55C</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7120N</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7820H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7855C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Semiconducteur bande interdite large</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Wide band gap semiconductors</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Couche épitaxique semiconductrice</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Semiconductor epitaxial layers</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Puits quantique semiconducteur</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Semiconductor quantum wells</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Point quantique semiconducteur</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Semiconductor quantum dots</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Effet haute pression</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>High-pressure effects</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Spectre visible</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Visible spectra</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Bande interdite</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Energy gap</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Constante optique</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Optical constants</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Bande valence</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Valence bands</s0>
</fC03>
<fN21>
<s1>253</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0136M000844</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/France/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001078 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/France/Analysis/biblio.hfd -nk 001078 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    France
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:01-0356834
   |texte=   Influence of pressure on the optical properties of InxGa1-xN epilayers and quantum structures
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024